LEARNING INTRANSITIVITY:FROM INTRANSITIVE GEOMETRICAL OBJECTS TO ‟RHIZOMATIC" INTRANSITIVITY | Библиотека Института психологии РАН

Библиотека Института психологии РАН

LEARNING INTRANSITIVITY:FROM INTRANSITIVE GEOMETRICAL OBJECTS TO ‟RHIZOMATIC" INTRANSITIVITY

Poddiakov Alexander
Technology and Psychology for Mathematics Education
ТИП ПУБЛИКАЦИИ статья в сборнике трудов конференции
ГОД 2019
ЯЗЫК EN
АННОТАЦИЯ
A new class of intransitive objects - geometrical and mathematical constructions forming intransitive cycles A > B > C > A - are presented. In contrast to the famous intransitive dice, lotteries, etc., they show deterministic (not probabilistic) intransitive relations. The simplest ones visualize intransitivity that can be understood at a qualitative level and does not require quantitative reasoning. They can be used as manipulatives for learning in- transitivity. Classification of the types of situations in which the transitivity axiom does and does not work is presented. Four levels of complexity of intransitivity are introduced, from simple combinatorial intransitivity to a “rhizomatic” one. A possible version of the main educational message for students in teaching and learning transitivity-intransitivity is presented.
ЦИТАТА
Poddiakov, A. LEARNING INTRANSITIVITY:FROM INTRANSITIVE GEOMETRICAL OBJECTS TO ‟RHIZOMATIC" INTRANSITIVITY / A. Poddiakov // Technology and Psychology for Mathematics Education. : Proceedings of the PME and Yandex Russian conference. – 2019. – P. 178-187
АВТОРЫ

Поддьяков Александр Николаевич

ЛАБОРАТОРИЯ ПСИХОЛОГИИ И ПСИХОФИЗИОЛОГИИ ТВОРЧЕСТВА
Главный научный сотрудник

Публикаций в поиске

164
ПЕДАГОГИЧЕСКАЯ ПСИХОЛОГИЯ ОБЩАЯ ПСИХОЛОГИЯ, ПСИХОЛОГИЯ ЛИЧНОСТИ, ИСТОРИЯ ПСИХОЛОГИИ НЕОПРЕДЕЛЕННОСТЬ
ПОХОЖИЕ ПУБЛИКАЦИИ