


ИНСТИТУТ СОЦИАЛЬНО-ГУМАНИТАРНЫХ НАУК И ТЕХНОЛОГИЙ

ЧЕЛОВЕК В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

СБОРНИК НАУЧНЫХ ТРУДОВ ТОМ І

Самара 2018

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ИНСТИТУТ СОЦИАЛЬНО-ГУМАНИТАРНЫХ НАУК И ТЕХНОЛОГИЙ

ЧЕЛОВЕК В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Сборник научных трудов

Самара
Самарский государственный технический университет
2018

Печатается по решению ученого совета СамГТУ (протокол № 9 от 31.03.2017 г.).

ББК Ю6: Ю9 я4 УДК 159.9(06) Ч-39

Ч-39 **Человек в условиях неопределенности:** сборник научных трудов в 2-х т. / Под общей и научной редакцией д.ф.н. *Е.В. Бакшутовой*, д.п.н. *О.В. Юсуповой*, к.псх.н. *Е.Ю. Двойниковой*. – Самара: Самар. гос. техн. ун-т, 2018. – Т. 1. – 270 с.

ISBN 978-5-7964-2090-4 ISBN 978-5-7964-2094-2

Сборник научных трудов посвящен описанию, анализу, эмпирическому и экспериментальному изучению актуализировавшихся во втором десятилетии XXI века концептов/феноменов «неопределенность», «жизнестойкость», «жизнеспособность» с философской, культурологической, психологической и педагогической позиций. В сборнике использованы материалы научно-практической конференции с международным участием «Человек в условиях неопределенности», 19-20 апреля, Самара, апрель 2018 г.

Статьи печатаются в авторской редакции.

ББК Ю6: Ю9 я4 УДК 159.9(06) Ч-39

Рецензенты:

Ситников Валерий Леонидович, доктор психологических наук, профессор, заведующий кафедрой возрастной психологии и педагогики семьи Института Детства ФГБОУ ВО «Российский государственный педагогический университет им. А.И. Герцена»,

Разинов Юрий Анатольевич, доктор философских наук, профессор кафедры философии ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»

ISBN 978-5-7964-2090-4 ISBN 978-5-7964-2094-2 © Авторы, 2018

© Самарский государственный технический университет, 2018

© Ромаданова С.В., обложка, 2018

СОДЕРЖАНИЕ

Бакшутова Е.В., Двойникова Е.Ю., Нестеренко В.М.	6
Неопределенность как возможность (Вместо предисловия)	6
Раздел 1. Когнитивные аспекты проблемы «Человек в условиях неопределенности»	
Агафонов А.Ю.	
Осознание как следствие преодоления когнитивной энтропии	9
Блинникова И.В., Измалкова А.И., Капица М.С.	
Уровень неопределенности цели как фактор организации поисковой активности	15
Волкова Н.Н., Гусев А.Н.	
Когнитивные стили как средства преодоления перцептивной неопределенности	22
при решении пороговых задач	22
Деева Т.М., Агафонов А.Ю., Крюкова А.П.	
Неосознаваемая подсказка в ситуации неопределенности: помощь или помеха?	27
Емельянова С.А., Гусев А.Н.	
Деятельность наблюдателя в условиях высокой сенсорной неопределенности	33
Жегалло А.В.	
Оценка уверенности при опознании и различении объектов в задачах с неопре-	37
деленностью в рамках векторной модели различения стимулов Е.Н. Соколова	
Крюкова А.П., Бартенева Е.В., Деева Т.М.	
Имплицитное запоминание последовательностей как деятельность в условиях	40
неопределенности	
Скотникова И.Г. Психофизические и когнитивные аспекты проблемы «человек в условиях неоп-	
психофизические и когнитивные аспекты проолемы «человек в условиях неоп- ределенности»	44
ределенности» Шендяпин В.М., Скотникова И.Г., Курбанов К.А.	
Человек в условиях неопределенности: подход к изучению в парадигме вероят-	
ностного прогнозирования в когнитивных задачах	59
noemoro iipornosiipobainia b koriiirinbiibia saga iaa	
РАЗДЕЛ 2. «ХРУПКОСТЬ» И «АНТИХРУПКОСТЬ» ЛИЧНОСТИ И ОБЩЕСТВА В ПОСТСОВРЕМЕННОСТИ	
Иванкова Д.Л.	
Исследование взаимосвязи жизненной компетентности и толерантности к не-	
определенности в молодости	56
Лисова Е.Н.	
Методы психопрофилактики террористической виктимности	60
Максименко Ж.А.	
Рискогенные факторы киберсоциализации в условиях постсовременности	64
Раменская Е.К.	
Психологические особенности игры подростков с наличием/отсутствием ком-	68
пьютерно-игровой зависимости	Uc
Родштейн М.Н.	
Нормативное информационное давление на гендерную идентификацию	71
Якиманская И.С.	
Психологическое здоровье и возможности его поддержки у подростков в усло-	75
виях средней школы (результаты исследования подростков Оренбургской области)	15

блюдателями собственной эффективности. При низком уровне саморегуляции действие посторонних факторов в ситуации неопределенности оказывается выше, что влечет за собой нестабильность времени реакции, а при высоком уровне саморегуляции наблюдатели лучше «сфокусированы» на задаче и инструкции к ней, однако оказываются менее внимательными к собственным ощущениям. Это может приводить к тому, что не все способы действования оказываются наблюдателю доступными. Экспериментально-теоретический подход к наблюдателю как субъекту психофизического измерения позволяет описать и изучить способы овладения наблюдателями сенсорной информацией в ситуации неопределенности. Контроль за выполнением сенсорного действия может быть описан и через рассмотрение опосредующие его индивидуальные стратегии наблюдателей. К настоящему времени относительно изученными в этом контексте являются лишь некоторые отдельные когнитивные стили. Поэтому изменение показателей эффективности выполнения сенсорных задач требует дальнейшего рассмотрения и изучения, а именно, под влиянием каких условий – интраиндивидуальных и интериндивидуальных - меняются значения пороговых показателей, а также, какие именно внешние условия предъявления сигналов определяют большую или меньшую степень неопределенности стимульного материала для наблюдателя.

Библиографический список

- 1. Бардин К.В., Индлин Ю.А. Начала субъектной психофизики. М.: ИП РАН, 1993. 254 с.
- 2. Гусев А.Н. Психофизика сенсорных задач: Системно-деятельностный анализ поведения человека в ситуации неопределенности. М.: Издательство Московского университета, 2004. 315 с.
- 3. Скотникова И.Г. Проблемы субъектной психофизики. М.: Институт психологии РАН, 2008. 382 с.
- 4. Уточкин И.С., Гусев А.Н. Роль функционального органа в решении слуховой сенсорной задачи при унилатеральном предъявлении стимулов // Теория деятельности: фундаментальная наука и социальная практика (к 100-летию А.Н. Леонтьева) / Под общ. ред. А.А. Леонтьева. М.: Смысл, 2003. С. 154-155.
 - 5. Шапкин С.А. Экспериментальное изучение волевых процессов. М.: Смысл, 1997. 140 с.
- 6. Gusev A.N., Shapkin S.A. Individual differences in auditory signal detection task: subject-oriented study // Fechner Day 2001 / Ed. by E. Sammerfeld, R. Kompass, T. Lachmann. Lengerich: Pabst Science Publishers, 2001. P. 397-402.
- 7. Kuhl J. Volitional mediators of cognition behavior consistency: Self-regulatory processes and action versus state orientation // In Motivation, thought, and action. 1985. P. 279-291.

УДК 159.91,159.937

ОЦЕНКА УВЕРЕННОСТИ ПРИ ОПОЗНАНИИ И РАЗЛИЧЕНИИ ОБЪЕКТОВ В ЗАДАЧАХ С НЕОПРЕДЕЛЕННОСТЬЮ В РАМКАХ ВЕКТОРНОЙ МОДЕЛИ РАЗЛИЧЕНИЯ СТИМУЛОВ Е.Н. СОКОЛОВА 2

А.В. Жегалло

ФГБУН «Институт психологии РАН»

Предлагается методика оценки уверенности в опознании и различении стимулов, основанная на векторной модели различения стимулов Е.Н. Соколова.

Ключевые слова: векторная модель различения стимулов, уверенность в опознании.

 $^{^2}$ Работа выполнена в рамках госзадания ФАНО РФ № 0159-2018-0004

ESTIMATION OF CONFIDENCE IN THE IDENTIFICATION AND DISCRIMINATION TASK WITHIN THE E.N. SOKOLOV VECTOR MODEL OF DISCRIMINATION OF STIMULI

A.V. Zhegallo

Institute of Psychology RAS

A technique for assessing confidence in there cognition and discrimination of stimuli, based on the E.N. Sokolov vector model of discrimination of stimuli, is proposed.

Keywords: vector model of discrimination of stimuli, confidence in recognition.

В рамках векторной модели Е.Н. Соколова сенсорные репрезентации стимулов кодируются точками на гиперсфере единичного радиуса в многомерном евклидовом пространстве. В качестве показателя субъективного сходства принимается косинус угла ХОУ, где X и Y – различаемые стимулы, О – начало координат [9, 10]. Полагая координаты векторов, задающих отдельные характеристики стимулов: $X=(x_1,x_2,...x_n)$, $Y=(y_1,y_2,...y_n)$, где n-p размерность пространства, причем $\sum_{i=1}^n x_i^2 = 1$, $\sum_{i=1}^n y_i^2 = 1$, косинус угла ХОУ вычисляется как скалярное произведение векторов X и Y: $\sum_{i=1}^n x_i y_i$. В электрофизиологических экспериментах величина сходства с эталоном непосредственно измеряется как уровень возбуждения нейрона – детектора, причем эталон задается весами синаптических связей детектора, а сопоставляемый с ним стимул – возбуждением соответствующих синапсов детектора [9].

Размерность пространства, т.е. размерность векторов, кодирующих стимулы, зависит от содержания различаемых стимулов. В работах представителей школы Е.Н. Соколова [3, 6, 7] традиционно рассматриваются пространства низких размерностей. Г. Хакен, предлагая использовать для моделирования различения и опознания изображений т.н. «синергетический компьютер» [10], полностью эквивалентный векторной модели Соколова, полагает, что элементами векторов являются уровни яркости отдельных точек изображения, что для изображения 200х200 точек дает размерность 4*104.

В наших исследованиях изучалось различение искусственно построенных путем компьютерного морфинга переходных эмоциональных экспрессий лица в задачах с неопределенностью (когда различия в парах сравниваемых лиц едва заметны, т.е. близки к пороговым). Процедура морфинга позволяет по паре исходных 2D изображений A и В построить третье, характеризующееся в заданной степени свойствами каждого из исходных изображений. Для решения этой задачи на исходных изображениях определяется набор взаимно соответствующих ключевых точек, образующих триангуляционную сетку. В случае, когда исходные изображения представляют собой лица, ключевые точки расставляются в соответствии с их анатомическим устройством, отмечая расположение глаз, бровей, рта, носа, ушей и т.д.

На основе построенной сетки рассчитывается отображение, трансформирующее каждую ячейку сетки изображения А в соответствующую ячейку сетки изображения В и таким образом переводящее изображение А в изображение В. Таким образом, каждой точке изображения А (x1, y1) можно поставить в соответствие точку изображения В (x2, y2). Используя уравнения, описывающие процесс трансформации, можно рассчитать позицию и яркость точек промежуточного изображения, соответствующих той или иной степени завершенности процесса. Если, например, процесс трансформации произведен на 30 %, то промежуточное изображение будет представлять собой морф, состоящий из 70 % А и 30 % В. Таким образом, при достаточно подробном наборе ключевых точек процедура морфинга

позволяет построить плавный переходный ряд заданной длины между A и B, характеризующийся постоянной степенью визуального различия между соседними изображениями.

Искусственно построенные с помощью процедуры компьютерного морфига линейные переходные ряды изображений лиц (например, 0 % морфа, 20 %, 40 % 60 %, 80 %, 100 %) являются практически эквидистантными в смысле «синергетического компьютера» Хакена, т.е. расчетные расстояния между соседними в переходном ряду изображениями, вычисленные в соответствии с данным алгоритмом, практически одинаковы. С другой стороны, экспериментальные данные по эффективности различения переходных выражений лица не согласуются с теоретическими оценками сходства, выполненными в парадигме «синергетического компьютера». При включении в модель оценок сходства для отдельных уровней вейвлет-декомпозиции, что соответствует рецептивным полям разной детализации, достигается хорошее согласование с экспериментальными результатами [1, 4]. Перспективное направление исследований применительно к переходным выражениям лица состоит в использовании для описания выражения лица модели активной трансформации [11], что позволит сократить размерность кодирующих векторов до 102.

Таким образом, мы полагаем, что векторная модель различения стимулов Е.Н. Соколова является полезной по крайней мере при описании механизмов опознания и различения выражений лица (сравнение двух выражений лица, либо сравнение опознаваемого выражения лица с перцептивным эталоном). Для других классов стимулов использование векторной модели предполагает содержательный выбор компонент векторов, кодирующих стимулы.

Сопоставление векторной модели различения стимулов и определения коэффициента корреляции г-Пирсона $r_{xy} = \frac{\sum_{i=1}^{N} (x_i - M_x)(y_i - M_y)}{(N-1)\sigma_x\sigma_y}$ показывает, что показатель субъективного сходства в векторной модели (косинус угла между кодирующими сенсорны репрезентации стимулов единичными векторами, исходящими из начала координат) и коэффициент корреляции Пирсона между данными векторами тождественны с точностью до обозначений. Таким образом, в качестве показателя уверенности наблюдателя в суждении относительно перцептивного сходства между стимулами можно принять p-уровень значимости корреляции. Фиксируя заданный уровень значимости (например, p=0,05) мы можем моделировать ситуацию перехода от градуальных вероятностных оценок сходства к дискретным суждениям.

Подводя итоги, можно предложить следующую процедуру оценки уверенности при решении задач на различение либо опознание стимулов в рамках выделенного класса объектов. Эмпирическая информация о степени субъективного сходства объектов получается либо непосредственно, по результатам решения задачи сравнения [8], либо косвенным образом, ПО результатам решения дискриминационной Дополнительная информация о признаках, на которые ориентировались испытуемые может быть получена при анализе обсуждений, выполняемых участниками исследования [5]. На основании данных о количественном сходстве между изображениями и используемых наблюдателями признаках сходства/различия содержательно подбирается размерность и состав признаков, кодирующих вектора различаемых сенсорных репрезентаций стимулов. После теоретическая численная оценка субъективного сходства между стимулами может быть выполнена путем расчета коэффициента корреляции Пирсона между векторами сенсорных репрезентаций стимулов, а теоретическая оценка уверенности в принятом решении об идентичности стимулов - путем расчета р-уровня значимости данной корреляции.

Библиографический список

- 1. Анананьева К.И., Жегалло А.В., Мармалюк П.А. Эффективность различения лиц разных расовых типов русскими и тувинскими наблюдателями как характеристика пространственных свойств изображений // Лицо человека в науке, искусстве и практике. М.: Когито-Центр, 2015. С. 41-52.
- 2. Барабанщиков В.А., Жегалло А.В., Королькова О.А. Перцептивная категоризация выражений лица. М.: Когито-Центр, 2016.
- 3. Вартанов А.В., Вартанова И.И. Что такое эмоции? 4-мерная сферическая модель аспектов переживания, выражения, восприятия и обозначения эмоций // Культурно-исторический подход и проблема творчества: материалы вторых чтений памяти Л.С. Выготского, Москва, 17-20 ноября 2002 года. М.: РГГУ, фонд им. Л.С. Выготского, 2003.
- 4. Жегалло А.В., Мармалюк П.А. Характеристики изображений, определяющие эффективность их различения. // Естественно-научный подход в современной психологии. М.: ИПРАН, 2014. С. 157-162.
- 5. Жегалло А.В. Опознание и различение геометрических фигур // Фундаментальные и прикладные исследования современной психологии: результаты и перспективы развития / Отв. ред. А.Л. Журавлёв, В.А. Кольцова. М.: Изд-во «Институт психологии РАН», 2017. С. 477-483.
- 6. Измайлов Ч. А., Соколов Е. Н., Черноризов А. М. Психофизиология цветового зрения. М.: МГУ, 1989. 206 с.
- 7. Кисельников А.А., Сергеев А.А. Новый подход к построению цветоэмоциональных семантических пространств // Когнитивная наука в Москве: новые исследования. Материалы конференции 19 июня 2013 г. М.: ООО «Буки Веди», 2013. С. 140 144.
- 8. Самойленко Е.С. Проблемы сравнения в психологическом исследовании. М.: ИПРАН, 2010. 416 с.
 - 9. Соколов Е.Н. Очерки по психологии сознания. М.: МГУ, 2010. 255 с.
- 10. Фомин С.В., Соколов Е.Н., Вайткявичус Г.Г. Искусственные органы чувств. М.: Наука, 1979.
- 11. Haken H. Synergetic Computers and Cognition. A Top-Down Approach to Neural Nets.Berlin Heidelberg New York: Springer, 1991.
- 12. Le Chang, Doris Y. Tsao. The Code for Facial Identity in the Primate Brain. // Cell, 2017. V. 169, P. 1013-1028.

УДК159.9.07

ИМПЛИЦИТНОЕ ЗАПОМИНАНИЕ ПОСЛЕДОВАТЕЛЬНОСТЕЙ КАК ДЕЯТЕЛЬНОСТЬ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

А.П. Крюкова, Е.В. Бартенева, Т.М. Деева

ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»

Статья посвящена феномену имплицитного научения. Имплицитное научение является деятельностью, которая эффективно протекает в условиях неопределенности. Поэтому для изучения имплицитного приобретения и использования знаний ситуацию неопределенности моделируют в экспериментальных процедурах. Описаны результаты, обнаруженные в исследованиях с применением техники «выучивание последовательностей». Проведен анализ того, когнитивная или моторная деятельность является основой всего накопленного экспериментального материала. Сделан вывод, что проблема соотношения когнитивного и моторного при имплицитном выучивании последовательностей требует дальнейшего подробного изучения.

Ключевые слова: имплицитное научение, выучивание последовательностей, условия неопределенности, когнитивная деятельность, моторная деятельность.